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Abstract1

Semantic representation, a crucial window into human cognition, has been2

studied independently in neuroscience and computer science. A deep3

understanding of neural computations in the human brain and the revolution to a4

strong artificial intelligence appeal for a necessity of joint force in the language5

domain. We investigated the representational formats of comparable lexical semantic6

features between these two complex systems with fine temporal resolution neural7

recordings. We found semantic representations generated from computational8

models significantly correlated with EEG responses at an early stage of a typical9

semantic processing time window in a two-word semantic priming paradigm.10

Moreover, three selected computational models differentially predicted EEG11

responses along the dynamics of word processing in the human brain. Our study12

provided a finer-grained understanding of the neural dynamics underlying semantic13

processing and developed an objective biomarker for assessing human-like14

computation in computational models. Our novel framework trailblazed a promising15

way to bridge across disciplines in the investigation of higher-order cognitive16

functions in human and artificial intelligence.17
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1 Introduction18

Humans intuitively know that the meaning of the word moon is more related to stars than19

to apples. Establishing semantic similarity among concepts is a rudimentary adaptive20

trait for generalization. As an initial step for simulating human intelligence,21

computational models need to establish semantic relationship among words as well. To22

leap towards real artificial intelligence, we need to bridge representational formats23

independently developed from two complex systems – our brain and the computer.24

Bridging the representational formats between computers and human brain has25

recently obtained promising breakthroughs. For example, in vision, the representations26

in visual hierarchy have been mapped onto distinct layers in deep neural networks27

(Khaligh-Razavi and Kriegeskorte 2014, Yamins et al. 2014). However, the important28

branch of artificial intelligence – natural language processing (NLP) – has yet to make29

substantial connections to higher-level cognitive function of language. The lack of30

fine-grained neurolinguistic processing models and granular neural recording methods31

constrains the progress in the language domain (Poeppel 2012). In this project, we32

proposed a novel approach to join forces across computer science and cognitive33

neuroscience. By searching for the correlations between neural activity recorded by34

electroencephalography (EEG) and semantic similarity learned by deep learning models35

of NLP, our work pioneered in bridging the gap in two ways. Specifically, (a) semantic36

information encoded in computational models unveiled the neural dynamics of semantic37

processing; (b) neural data quantified a biomarker for objectively assessing human-like38

semantic similarity in NLP models.39

Semantics in computer science and cognitive neuroscience40

Within computer science, semantic representation is the cornerstone of complex tasks41

such as information retrieval, question answering, machine translation, document42

clustering, etc. Earlier approaches were typically confined to algorithms that require the43

use of expert-knowledge-based corpus like WordNet (e.g., Resnik 1995, 1999, Lin 1998).44

Recent development in deep learning NLP models creates embedding representations45

based on the idea that lexical semantic information is reflected by word distribution46

(Harris 1954, Firth 1957, Miller 1986). Specifically, embedding models learn semantic47

representation from words’ distribution in their context in a large corpus. Distributional48

information of words is compressed into dense, lower-dimensional vectors. The49
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Figure 1: Schematic diagram of semantic representations in the human brain and word embed-
ding models. A) A schematic diagram showing how the frequency of words in context yields
embedding representations in computational models. Semantically similar words share higher
distributional similarity, as illustrated by the counts of neighboring words in the sample mini cor-
pus. Computational models learn semantic representation from words’ distribution and generate
embedding representations. B) A schematic diagram showing the semantic space in the human
brain à la Huth et al. (2016). Semantically more similar concepts are represented with more corti-
cal overlaps, indicating shared features. C) A schematic diagram showing how the angle between
high-dimensional vectors represents semantic similarity in computational models. The angle be-
tween two high-dimensional vectors (only two dimensions are used for demonstration) represents
semantic similarity. The smaller an angle is (i.e., a higher cosine value), the higher semantic simi-
larity (e.g., the angle between star and moon is smaller than the one between star and apple, because
star and moon share more features, as shown in Fig. 1A). D) A schematic diagram showing how the
amplitudes of neural responses represent semantic similarity in the human brain (e.g., N400, see
Kutas and Federmeier 2011). The smaller amplitudes in neural responses to a word are observed
when it shares more semantic features with its preceding word (e.g., star shares more features with
moon than with apple, as shown in Fig. 1B).

similarity between two words can be represented by the cosine value of the angle50

between the vectors (see Turney and Pantel 2010, and see Fig. 1 for an illustration).51

Within cognitive science, ample empirical evidence has shown that the similarity of52

semantic representation has a profound impact on human behavior (Neely 1976, 1977,53
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Lorch Jr 1982, Balota 1983, Anderson 1983, Roelofs 1992, Kiefer 2002). For example, in54

lexical decision, widely observed priming effects consist in that humans react to a word55

(e.g., star) faster when it is preceded by a semantically related word (e.g., in the pair moon56

– star) than by a semantically unrelated word (e.g., in the pair apple – star). The57

presentation of the first word (i.e., the prime) activates a node in a semantic network,58

which automatically spreads to neighboring nodes, facilitating the processing of the59

second word (i.e., the target) if it is semantically related (Collins and Loftus 1975)60

These behavioral findings on semantic similarity were further supported by61

neuroimaging studies. For example, the voxel-wise modelling neuroimaging study has62

yielded a semantic map in the human brain, on which concepts sharing more semantic63

features are mapped to closer brain areas (Huth et al. 2016). In electrophysiological64

studies, N400 effects – less neural activity around 400 ms after the onset of a more65

semantically expected word – were observed in both contextual and priming settings66

(e.g., Bentin et al. 1985, Kutas and Hillyard 1989, Holcomb 1993, Brown and Hagoort67

1993, Federmeier and Kutas 1999, Deacon et al. 2000, Kiefer 2002) (see Fig. 1).68

So far semantic representations have been investigated independently in computer69

science and cognitive neuroscience. It remains unclear to what extent representations70

yielded from computer models resemble to the ground truth of human representation.71

Bridging semantic representations in the human brain and computer models72

Recently, computational models have started advancing our understanding of language73

processing in human brain(Brennan 2016). The bridging of representations between74

neural activity and computational models has been preliminarily investigated in75

sentential context using N400 effects (Ettinger et al. 2016, Broderick et al. 2018). However,76

neural activity recorded during the comprehension of sentential stimuli and continuous77

speech was driven by both compositional processing (e.g., the composition between lamb78

and stew, yielding lamb stew, see e.g., Bemis and Pylkkänen 2011, Zhang and Pylkkänen79

2015, Pylkkänen 2019) and semantic processing (e.g., similarity-based spreading from80

lamb to stew), making neural data hardly comparable with pure semantic representations81

yielded from word embedding models.82

Therefore, our study focused on the representation of lexical semantics in the human83

brain and computer models. We adopted a canonical semantic priming design that84

elicited the measures of semantic similarity in the brain, directly comparable to semantic85

representations yielded by computational models without confounding factors from86
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compositional processing. We predicted that the two measures from the brain and87

computers would correlate in a rather narrow time window within classical N40088

component, presumably at the beginning of the processing purely related to semantic89

representation without contamination from compositional processing.90

Moreover, we selected three representative word embedding models, differing in the91

way of learning semantic representation. The CBOW (Continuous Bag-of-words) model92

(Mikolov et al. 2013) solely uses local context – a number of words immediately93

preceding and following a word. The other two models are based on CBOW. The GloVe94

(Global Vectors) model (Pennington et al. 2014) combines both local context and global95

corpus statistics for learning word representation. The CWE (Character-enhanced Word96

Embedding) model (Chen et al. 2015) captures both word-external local contextual97

information and word-internal character information. We predicted that both GloVe and98

CWE would correlate with brain responses better than CBOW. The better correlation99

would occur at different times because of particular features of the models – CWE at an100

earlier perceptual stage due to its inclusion of character-level information, whereas101

GloVe at a later stage reflecting semantic processing.102

By assessing the representational formats with a well-controlled experiment and103

millisecond-level neural recordings, we provided a framework directly bridging104

semantic representations between the human brain and computers. Our aim was105

twofold: (a) information encoded in NLP models contributed to a finer-grained106

understanding of the neural dynamics underlying semantic processing; (b) neural data107

contributed an objective assessment for human-like language processing in NLP models.108

2 Methods109

2.1 Participants110

A group of 30 healthy right-handed native Chinese speakers participated in the study.111

All had normal or corrected-to-normal vision. Five participants were excluded from data112

analyses: three due to excessive noise during recording, and two for being outliers in113

terms of accuracy in the behavioral task (more than 3 standard deviations below the114

average). Thus, 25 participants were included in EEG data analyses (14 females; average115

age = 22.6 years, SD = 2.8 years). All data were collected at the EEG lab at the116

NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai (Shanghai,117
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Figure 2: Experimental procedure and single-trial correlation analysis. A) The trial structure of
the experiment. Sample trials are illustrated for the two-word priming paradigm. In each trial,
a prime word was followed by a target word. Each word (here 星星 (star)) was used once at the
prime position (in the prime trial) and once at the target position (it the target trial). English transla-
tions below the screens are for demonstration only, but not included in the expreiment. B) Stimuli
statistics of semantic similarity generated by the three computational models. C) The flowchart
of single-trial correlational analysis, (i) Computing the amplitude differences between single-trial
EEG responses to the same word at its target vs. prime presentation (target minus prime); (ii) For
the 240 word pairs, calculating the correlation between cosine values generated from computa-
tional models and amplitude differences from step (i) at each time point in each sensor; (iii) The
obtained correlation coefficients form a waveform across time for each sensor; (iv) The distribution
of correlation coefficients from all sensors is plotted in a topography at each latency.

China). This study was approved by the local ethical committee at NYU Shanghai.118

Written consents were obtained from each participant.119

2.2 Experimental design and stimuli120

Our EEG experiment adopted a canonical two-word priming paradigm, with stimuli121

visually presented to the participants. We used 240 pairs of two-character Chinese nouns122

as critical stimuli. We randomly selected nouns to form ‘prime-target’ pairs. Among123

these ‘prime-target’ word pairs, some pairs (e.g.,月亮 (moon) –星星 (star)) are124

intuitively of a higher semantic similarity than others (e.g.,苹果 (apple) –月亮 (moon)).125

This random selection procedure yielded a distribution of semantic similarity (between126

prime and target) shown in Fig. 2B (see the entire stimuli list at127

https://ray306.github.io/brain_NLP/).128
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To construct 240 critical trials, we used 240 distinct nouns. Each noun appeared at the129

prime position once and at the target position once (see Fig. 2A). For each noun (e.g.,月130

亮 (moon)), the EEG responses elicited at the prime position (e.g., in the trial月亮131

(moon) –星星 (star)) represent semantic retrieval of its out-of-context meaning.132

Whereas, the EEG responses elicited at the target position (e.g., in the trial苹果 (apple) –133

月亮 (moon)) include the influence of the preceding word. Thus, the difference between134

these two EEG responses to the same word at different positions is priming effects,135

reflecting semantic similarity without the contamination from semantic retrieval.136

Therefore, we extracted the neural measure directly comparable to the semantic137

similarity computed from NLP models. Moreover, we extended the previous138

condition-level computation of ERP differences to the trial-level and provided a139

trial-level measurement of semantic priming effects.140

We added 120 additional pairs of stimuli as fillers, in which either the prime or the141

target was a two-character non-word (e.g.,害天,粽七). Thus, a total of 360 trials were142

included in this experiment. Participants were instructed to perform a lexical decision143

task, judging whether a trial contained a non-word. The purpose was to keep144

participants alert, encouraging them to process the stimuli at least to the lexical145

semantics level.146

The trial structure is illustrated in Fig. 2A. Each trial started with a fixation lasting for147

500 ms. After a 700 ms blank screen, the prime was presented for 500 ms. After another148

700 ms blank screen, the target was also presented for 500 ms, followed by a question149

mark ‘?’ and a prompt for the lexical decision task. The stimuli were in a white 40-point150

Songti font on a gray background. The 360 trials were divided into 6 blocks, each151

containing 60 trials. The critical trials and fillers were pseudo-randomized and152

quasi-evenly distributed in each block. The blocks were also pseudo-randomized.153

Between blocks, participants could take a short rest. The experimental presentation was154

programmed with a Python package – Expy (https://github.com/ray306/expy), an155

in-house software for presenting and controlling psychological experiments, available at156

http://slang.science.157

2.3 Procedure of data collection158

EEG recordings took place in an electrically-shielded and sound-proof room. EEG data159

were continuously recorded via a 32-channel ActiChamp system (Brain Products).160
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Electrodes were held in place on the scalp by an elastic cap (ActiCap) in a 10-20161

configuration as shown in Fig. 3A. Two more electrodes were placed below the left eye162

and at the outer canthus of the right eye to monitor vertical and horizontal eye163

movements (electro-oculogram, EOG). Impedance was kept less than 10 kΩ for all164

electrodes. The EEG signal was recorded in single DC mode, digitized at a sampling rate165

of 1000 Hz and online referenced to the vertex (Cz), with the use of the software166

BrainVision PyCoder. The recording session lasted approximately 30 minutes.167

2.4 Data pre-processing168

Only the 240 critical trials were included in EEG analysis. EEG data were processed and169

analyzed with EasyEEG toolbox (Yang et al. 2018,170

https://github.com/ray306/EasyEEG). Raw EEG data were bandpass filtered between171

0.1 and 30 Hz and epoched from 200 ms before to 800 ms after the onset of a word.172

Epochs were baseline corrected with the 200 ms interval before word onset. We removed173

those epochs affected by large vertical or horizontal eye movements, based on data174

recorded from the two electrodes monitoring EOG. We further visually inspected the175

epochs and removed those with large artifacts. The data were re-referenced to the176

average reference.177

2.5 Data analyses178

2.5.1 Behavioral data179

We checked the accuracy and reaction times for all 360 trials. Reaction times were180

measured from the onset of prompt for each trial and for each participant. We ran a181

two-tailed t-test on the data of accuracy and reaction times between critical trials and182

fillers, to verify whether participants paid attention to the stimuli.183

2.5.2 EEG data184

The analysis of EEG data constituted two parts. The first part aimed to examine the185

validity of the data by checking the ERP components in reading as well as N400 priming186

effects with the use of data averaged across trials (see Section 2.5.2.1). The second part187

was at the trial level, aiming to test (a) whether EEG responses can be predicted by a188

computational model within the typical time window for N400 priming effects (see189
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Section 2.5.2.2) and (b) among CBOW, GloVe, and CWE, which computational model190

was the best predictor at which time point (see Section 2.5.2.3).191

2.5.2.1 ERP analysis192

Trials were averaged for prime and target respectively. We plotted the ERP193

waveforms in a representative channel (Cz) for ERP to compare our data with N400194

effects reported in literature. To summarize and visualize the distributed energy195

fluctuation, we plotted the dynamics of Global Field Power (GFP, see Lehmann and196

Skrandies 1980), calculated as a geometric mean of electric potentials across all sensors.197

To reveal and visualize ERP components during word processing, we used an automatic198

segregation method (Topography-based Temporal-analysis Toolbox, TTT) to detect199

component boundaries and plotted boundaries along with average ERP responses of200

each channel and GFP (Wang et al. 2019). To visualize the dynamics of activation201

patterns, we plotted the topographies across time for ERP responses to prime and target202

as well as the differences between the two (i.e., target minus prime).203

2.5.2.2 EEG data analysis at trial level (a): testing whether EEG responses can be204

predicted by a computational model205

All the three selected word embedding models (i.e., CBOW, GloVe, and CWE) were206

trained on Chinese Wikipedia. These models calculated cosine similarities for the 240207

word pairs used as critical stimuli, and we correlated the model-generated cosine208

similarities with single-trial EEG responses, according to the following procedure (see209

Fig. 2C):210

First, for each word, we subtracted the EEG responses to its presentation at the prime211

position from those responses at the target position. This EEG difference for each word212

represents priming effects with no contamination of semantic retrieval.213

Second, we calculated the correlation co-efficient r between ERP differences214

(computed from 240 critical trials by Step 1) and model-generated semantic similarities215

(cosine values). This calculation of correlation was performed at each time point in each216

channel.217

Third, the correlations of all time points at a channel yielded a temporal progression218

of correlations at this channel.219

Fourth, based on the previous three steps, we calculated the temporal progression of220

correlations for all channels and obtained a series of topographies of correlations along221
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the time course.222

We obtained a null distribution of r values by shuffling the pairing among the 240223

EEG response differences and the 240 cosine similarities for 1000 times. Empirical r224

values were checked against this null distribution to determine the statistic significance225

(at the level of p < 0.05) at each time point.226

2.5.2.3 EEG data analysis at trial level (b): testing which computational model was the227

best predictor at which time point228

When testing which word embedding model (among CBOW, GloVe, and CWE)229

was the best predictor at which time point, we conducted permutation tests on230

correlation r values averaged across channels to estimate the overall predictability of231

each model. We did the same permutation tests on correlation r values for each channel232

to examine the spatial distribution of the predictability of each model.233

Specifically, from the correlation between EEG responses in each of the 32 channels at234

each of the 800 milliseconds and cosine similarities computed from each of the three235

computational models, we obtained a 32× 800-dimensional matrix of r values for each236

model.237

To estimate the overall predictability of each model, we averaged the absolute r238

values across channels, yielding a line of temporal progression of r for each word239

embedding model. At each time point, we randomly shuffled the pairing between EEG240

responses and cosine values generated by the three models for 1000 times. The shuffling241

yielded a null distribution of r differences between any two models. Empirical r242

differences were checked against this null distribution at each time point.243

We did the same permutation tests for each channel to further compare the244

predictability of models and investigate the site of effects.245

3 Results246

3.1 Behavioral data247

The mean accuracy of lexical decision task was 94.6% (SD = 2.4%). The two-tailed t-test248

revealed significant differences between critical trials and fillers (mean accuracy and SD249

for critical trials: 96% (2.5%); mean accuracy and SD for fillers: 91% (4.6%); t (24) = 4.99; p250

< 0.001).251
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mantic processes in language comprehension. A) The waveform responses in a representative
channel (Cz). Typical N400 profile was observed in both prime and target. The montage of sen-
sor locations is inserted with the selected channel Cz highlighted. B) The dynamics of GFP. The
aggregated neural activity across all sensors represented in GFP shows the similar dynamics that
has clear perceptual and semantic activation. C) The temporal components revealed in the grand
averaged ERP responses across targets and primes. Each black line represents ERP responses in
each channel. The orange line represents the GFP across all sensors. The vertical dashed lines label
the temporal boundaries between ERP components revealed by an automatic segregation method.
D) The temporal progression of topographies. The topographies for target and prime were rep-
resented in the upper and lower rows respectively. Similar topographic patterns and temporal
progressions were observed in both target and prime. E) The temporal progression of topographic
differences. Differences resulted from subtracting prime from target revealed classic N400 topo-
graphic patterns from 250 to 600 ms.

The mean reaction time was 289 ms (SD = 102 ms). The two-tailed t-test also revealed252

significant differences between critical trials and fillers (mean reaction time and SD for253

critical trials: 296 ms (103 ms); mean reaction time and SD for fillers 274 ms (101 ms); t254

(24) = 4.475; p < 0.001).255

Behavioral data indicated that participants reacted differently towards critical trials256

and fillers, suggesting that they fully processed lexical semantic information.257

3.2 EEG data258

3.2.1 Results from ERP analysis259

ERP responses were obtained after averaging trials for prime and target respectively (Fig.260

3). The waveform ERP responses at a representative channel, Cz, clearly indicate the261
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evolution of ERP components associated with reading a word (Fig. 3A). Responses to262

both target and prime showed early visual responses N1 and P2 as well as263

semantics-related N400 effects, consistent with well-established literature (Kutas and264

Federmeier 2011). Similar evolution of ERP components was also observed in the265

dynamics of GFP which included activity of all sensors (Fig. 3B), demonstrating the266

reliability of elicited data without the potential pitfalls of subjective bias. The boundaries267

of ERP components were detected based on an automatic segregation method (Wang268

et al. 2019) and plotted in Fig. 3C. The component after visual processing was further269

segregated into three sub-components.270

Topographic responses to prime and target demonstrate consistent evolution of271

response patterns (Fig. 3D), suggesting common cognitive functions unfolding over time272

during the reading of these words at prime and target positions. Topographic differences273

between target and prime showed magnitude differences in sensors over frontal and274

temporo-parietal regions around 300 ms (Fig. 3E), consistent with the pattern of typical275

N400 priming effects (see Kutas and Federmeier 2011)276

Our ERP responses were temporally and spatially consistent with well-established277

N400 priming effects, demonstrating the reliability and validity of neural measures on278

semantic similarity.279

3.2.2 Results from trial-level analysis (a): single-trial EEG responses can be280

predicted by a computational model281

We selected GloVe as a representative NLP model. The generated measure of semantic282

similarity was correlated with single-trial EEG response differences between prime and283

target (Fig. 4). The correlation was significant at 300 ms after word onset at channel Oz: r284

= 0.173 (p = 0.007) (Fig. 4A). The dynamics of r was obtained in the same channel (Fig.285

4B). A non-parametric statistics revealed that the GloVe-generated semantic similarity286

values significantly correlated with EEG response differences between 226 and 306 ms.287

The spatial distribution of r value was further investigated, by computing the288

correlations in all sensors (Fig. 4C). The heamap shows that correlations in about half of289

the sensors were significant between 200 to 300 ms, consistent with the results in Fig. 4B.290

The distribution of significant correlations in this time window was scrutinized by291

delineating the evolution of topographies. Most robust correlations were found at292

sensors over the left frontal and occipital regions, consistent with the typical pattern of293

N400 effects. The observed semantic processing in a narrow and early time window was294
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Figure 4: Correlations between EEG responses and a word embedding models reveals the dy-
namics of semantic processing. A) Significant correlation was observed between EEG responses
in channel Oz at the latency of 300 ms and cosine values computed by the model GloVe. B) The
temporal progression of correlations (channel Oz). Significant correlations were observed between
226 and 274 ms, between 279 and 306 ms, and between 518 and 529 ms (in red). The significance
was determined by the threshold (horizontal line) obtained in a non-parametric permutation test
at each time point (alpha level at 0.05). C) The spatio-temporal characteristics of correlations. The
heatmap of correlations across time and channels revealed significance between 200 and 300 ms in
about half of the sensors. The progression of topographies in the time window of significance is
zoomed in above. Significant correlations were concentrated in the sensors above the left frontal
and tempo-parietal regions.

consistent with the findings of semantic dynamics in ERP responses after removing295

temporal variance among trials (Wang et al. 2019). Taken together, these results296

demonstrated that NLP models can predict EEG responses, suggesting the common297

semantic representations between two complex systems.298
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Figure 5: Three word embedding models distinctively correlate with EEG responses. A) The
temporal progression of averaged correlations across sensors for each computational model. The
correlation for GloVe was significantly better than the other two models between 244 and 251 ms, as
highlighted in the shaded window. The significance was determined by non-parametric permuta-
tion tests. B) The temporal progression of correlation topographies for each computational model.
Similar patterns were observed among all models. C) The tempo-spatial characteristics of corre-
lation differences among the three computational models. Pairwise non-parametric permutation
tests in each sensor revealed distinct predictability at different latencies for each model.

3.2.3 Results from trial-level analysis (b): The three NLP models distinctively299

correlated with EEG responses300

We compared the predictability of three selected NLP models (CBOW, GloVe, and CWE)301

with permutation tests along the temporal progression. Averaged r values across302

channels in any two of the three models were subject to pairwise comparisons. The303

results revealed three time windows (lasting for at least 10 ms) within which one model304

was a significantly better predictor than another one at each time point: (a) CWE305

predicted significantly better than GloVe between 94 and 122 ms; (b) GloVe predicted306

significantly better than CWE between 244 and 256 ms; (c) GloVe predicted significantly307

better than CBOW between 202 and 251 ms. GloVe was a significantly better predictor308

than the other two models between 244 and 251 ms (yellow shaded area in Fig. 5A).309
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The topographies of r values for all three models were plotted in Fig. 5B,310

demonstrating that the correlation patterns were spatially consistent among the three311

models. In particular, high correlations were observed in sensors over the left frontal and312

occipital regions around 250 to 300 ms, similar as the observation in Fig. 4. The similar313

spatio-temporal configuration was obtained in permutation tests at channel level, which314

further revealed that GloVe was the best predictor at sensors over the left frontal and315

occipital regions around 250 to 300 ms (Fig. 5C). These consistent results in temporal and316

spatial domains provide strong evidence for the dynamics of semantic processing.317

Moreover, CWE was the best predictor around 130 ms in posterior channels.318

Consistent spatio-temporal configurations for this earlier effect were also observed across319

all the three models (Fig. 5B). CBOW was the best predictor around 160 ms in posterior320

channels. Taken together, these results show that the three word embedding models321

distinctively correlated with ERP differences at distinct latencies.322

4 Discussion323

In this study, we investigated whether and how the lexical semantic representation that324

independently established in the human brain and computational models share similar325

formats. We found that semantic similarities computed by word embedding models326

correlated with EEG semantic priming responses in an early and narrow time window of327

N400 component. Moreover, distinct word embedding models that include different328

weighting of orthographic and semantic information correlated with neural responses at329

perceptual and semantic processing stages. Our study provided strong evidence330

suggesting that the dynamic processing of lexical semantics can be characterized by331

word embedding models based on the commonality of semantic representation between332

two complex systems.333

With a better controlled two-word semantic priming paradigm and non-invasive334

electrophysiological recordings, we provided an analytical approach to collaboratively335

investigate the semantic representations in two independent complex systems.336

Computational models can yield quantitative hypothesis to investigate neural337

processing, and neuroscience data can back-feed to computer models towards creating a338

stronger artificial intelligence that better emulate neural processes and human behavior.339

The current study provided a novel framework on how cognitive neuroscience and340

computer science can be bridged in a bi-directional investigation of the computational341
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mechanisms in language research.342

Computer science can help investigating neuroscientific theories. Granular aspects of343

linguistic information, such as lexical semantics, can be captured by computational344

models precisely, without contamination from other factors. Such dedicated and345

quantitative linking hypothesis between computers and brain provides lens to scrutinize346

neural computations. The millisecond-by-millisecond single-trial correlational analysis347

in the current study strikingly narrowed down the time window associated with348

well-established N400 component that commonly lasts from 250 to 600 ms after a word349

onset. The observation of significant correlation in a narrow and early time window350

remarkably reflected the processing of lexical semantics per se. These results can resolve351

a long lasting debate regarding to one of the most investigated linguistic processing352

components, N400 – whether it is integration (e.g., Hagoort et al. 2004) or semantic353

retrieval (Kutas and Federmeier 2011). Our results based on semantic representation354

extracted independently from computational models suggest that the commonly355

observed long duration of N400 presumably contains several sub-processes, and356

semantics-related processing starts at the beginning.357

Neuroscience can facilitate the journey to strong artificial intelligence. The current358

study advances in this direction from three aspects. First, neural measures can provide a359

biomarker for objectively assessing android performance of computational models. The360

correlations between two complex systems vary as a function of model selections (Fig.361

5A). The model GloVe correlated with neural data significantly better at around 250 ms362

than the other two models, suggesting that the implementation of global context yielded363

more human-like semantic representation. Second, the characteristics of neural364

dynamics can dissect computational models to probe their features. Distinct models365

showed better correlations at different latencies (Fig. 5C), suggesting CWE that366

correlated best at around 130 ms weighted more on lexical-orthographic features,367

whereas GloVe weighted more on lexical semantics.368

Third, this study trailblazes a database that will integrate research communities that369

vary across disciplines, cultures, and societies (https://ray306.github.io/brain_NLP/).370

The database can help computer scientists to evaluate how human-like their models are371

and to assess in which aspects the human-like features are. Moreover, the obtained372

millisecond-level, continuous neural data can help improve model performance and373

generalize across tasks by optimally integrating the best aspects of models based on374

dynamic featural processing. Our database (currently only in Mandarin Chinese and375
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English) is expected to expand to many other languages and dialects. We welcome the376

whole research community to contribute. This joint force will broaden the horizon and377

provide a unique opportunity to generalize computational models for language378

processing.379

Relating AI models and cognitive neuroscience has brought fruitful findings in other380

domains of cognition. For example, in vision, the state-of-the-art works by Kriegeskorte’s381

and DiCarlo’s groups (Kriegeskorte and Kievit 2013, Khaligh-Razavi and Kriegeskorte382

2014, Yamins et al. 2014) have established a mapping between features in different layers383

of deep neural network model and neural representation in the hierarchical processing384

in the brain. Our current study was an attempt to create such mapping in the domain of385

language. Unlike research in vision that can obtain from animal models using invasive386

methods, linking NLP models and language processing in human brain is constrained by387

the limits of neuroimaging methods. We carefully chose semantic features and a388

functional paradigm that can establish direct mapping between computational models389

and human brain in the linguistic domain. This endeavor opened a brand new door390

towards a full understanding of computational mechanisms of language processing in391

both complex systems.392

5 Conclusion393

By investigating the representational formats of comparable lexical semantic features394

between complex systems with fine temporal resolution neural recordings, we provided395

a novel framework directly bridging neuroscience and computer science in the domain396

of language. This framework brought a finer-grained understanding of the neural397

dynamics underlying semantic processing and developed an objective biomarker for398

assessing human-like computation in NLP models. Our study suggested a promising399

way to join forces across disciplines in the investigation of higher-order cognitive400

functions in human and artificial intelligence.401
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Legends513

Figure 1. Schematic diagram of semantic representations in the human brain and word514

embedding models. A) A schematic diagram showing how the frequency of words in515

context yields embedding representations in computational models. Semantically516

similar words share higher distributional similarity, as illustrated by the counts of517

neighboring words in the sample mini corpus. Computational models learn semantic518

representation from words’ distribution and generate embedding representations. B) A519

schematic diagram showing the semantic space in the human brain à la Huth et al.520

(2016). Semantically more similar concepts are represented with more cortical overlaps,521

indicating shared features. C) A schematic diagram showing how the angle between522

high-dimensional vectors represents semantic similarity in computational models. The523

angle between two high-dimensional vectors (only two dimensions are used for524

demonstration) represents semantic similarity. The smaller an angle is (i.e., a higher525

cosine value), the higher semantic similarity (e.g., the angle between star and moon is526

smaller than the one between star and apple, because star and moon share more features,527

as shown in Fig. 1A). D) A schematic diagram showing how the amplitudes of neural528

responses represent semantic similarity in the human brain (e.g., N400, see Kutas and529

Federmeier 2011). The smaller amplitudes in neural responses to a word are observed530

when it shares more semantic features with its preceding word (e.g., star shares more531

features with moon than with apple, as shown in Fig. 1B).532

Figure 2. Experimental procedure and single-trial correlation analysis. A) The trial533

structure of the experiment. Sample trials are illustrated for the two-word priming534

paradigm. In each trial, a prime word was followed by a target word. Each word (here星535

星 (star)) was used once at the prime position (in the prime trial) and once at the target536

position (it the target trial). English translations below the screens are for demonstration537

only, but not included in the expreiment. B) Stimuli statistics of semantic similarity538

generated by the three computational models. C) The flowchart of single-trial539

correlational analysis, (i) Computing the amplitude differences between single-trial EEG540

responses to the same word at its target vs. prime presentation (target minus prime); (ii)541

For the 240 word pairs, calculating the correlation between cosine values generated from542

computational models and amplitude differences from step (i) at each time point in each543

sensor; (iii) The obtained correlation coefficients form a waveform across time for each544
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sensor; (iv) The distribution of correlation coefficients from all sensors is plotted in a545

topography at each latency.546

Figure 3. Event-related waveform and topographic responses consistent with547

perceptual and semantic processes in language comprehension. A) The waveform548

responses in a representative channel (Cz). Typical N400 profile was observed in both549

prime and target. The montage of sensor locations is inserted with the selected channel550

Cz highlighted. B) The dynamics of GFP. The aggregated neural activity across all551

sensors represented in GFP shows the similar dynamics that has clear perceptual and552

semantic activation. C) The temporal components revealed in the grand averaged ERP553

responses across targets and primes. Each black line represents ERP responses in each554

channel. The orange line represents the GFP across all sensors. The vertical dashed lines555

label the temporal boundaries between ERP components revealed by an automatic556

segregation method. D) The temporal progression of topographies. The topographies557

for target and prime were represented in the upper and lower rows respectively. Similar558

topographic patterns and temporal progressions were observed in both target and559

prime. E) The temporal progression of topographic differences. Differences resulted560

from subtracting prime from target revealed classic N400 topographic patterns from 250561

to 600 ms.562

Figure 4. Correlations between EEG responses and a word embedding model reveals563

the dynamics of semantic processing. A) Significant correlation was observed between564

EEG responses in channel Oz at the latency of 300 ms and cosine values computed by the565

model GloVe. B) The temporal progression of correlations (channel Oz). Significant566

correlations were observed between 226 and 274 ms, between 279 and 306 ms, and567

between 518 and 529 ms (in red). The significance was determined by the threshold568

(horizontal line) obtained in a non-parametric permutation test at each time point (alpha569

level at 0.05). C) The spatio-temporal characteristics of correlations. The heatmap of570

correlations across time and channels revealed significance between 200 and 300 ms in571

about half of the sensors. The progression of topographies in the time window of572

significance is zoomed in above. Significant correlations were concentrated in the573

sensors above the left frontal and tempo-parietal regions.574
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Figure 5. Three word embedding models distinctively correlate with EEG responses.575

A) The temporal progression of averaged correlations across sensors for each576

computational model. The correlation for GloVe was significantly better than the other577

two models between 244 and 251 ms, as highlighted in the shaded window. The578

significance was determined by non-parametric permutation tests. B) The temporal579

progression of correlation topographies for each computational model. Similar patterns580

were observed among all models. C) The tempo-spatial characteristics of correlation581

differences among the three computational models. Pairwise non-parametric582

permutation tests in each sensor revealed distinct predictability at different latencies for583

each model.584
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Figure 1. Schematic diagram of semantic representations in the human brain and word embedding models
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Figure 2. Experimental procedure and single-trial correlation analysis
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Figure 3. Event-related waveform and topographic responses consistent with perceptual and semantic processes in
language comprehension
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Figure 4. Correlations between EEG responses and a word embedding models reveals the dynamics of semantic
processing
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Figure 5. Three word embedding models distinctively correlate with EEG responses
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